Asymptotic Expansions for Oscillatory Integrals Using Inverse Functions
نویسندگان
چکیده
We treat finite oscillatory integrals of the form ∫ b a F (x) exp[ikG(x)]dx in which both F and G are real on the real line, are analytic over the open integration interval, and may have algebraic singularities at either or both interval end points. For many of these, we establish asymptotic expansions in inverse powers of k. No appeal to the theories of stationary phase or steepest descent is involved. We simply apply theory involving inverse functions and expansions for a Fourier coefficient ∫ b a φ(t) exp[ikt]dt. To this end, we have assembled several results involving inverse functions. Moreover, we have derived a new asymptotic expansion for this integral, valid when φ(t) = ∑ ajt σj .
منابع مشابه
Asymptotic Expansions of Symmetric Standard Elliptic Integrals
Symmetric standard elliptic integrals are considered when one of their parameters is larger than the others. Distributional approach is used for deriving five convergent expansions of these integrals in inverse powers of the respective five possible asymptotic parameters. Four of these expansions involve also a logarithmic term in the asymptotic variable. Coefficients of these expansions are ob...
متن کاملLoss of Gevrey Regularity for Asymptotic Optics
In this paper we will investigate some aspects of the asymptotic behavior of oscillatory integrals from the Gevrey point of view. We will give formal asymptotic expansions and study the Gevrey character of oscillatory integrals, in comparison with the Gevrey character of their amplitudes. We will deduce a formula for the loss of Gevrey regularity both for phase functions in the Morse class and ...
متن کاملNumerical quadrature of highly oscillatory integrals using derivatives
Numerical approximation of highly oscillatory functions is an area of research that has received considerable attention in recent years. Using asymptotic expansions as a point of departure, we derive Filon-type and Levin-type methods. These methods have the wonderful property that they improve with accuracy as the frequency of oscillations increases. A generalization of Levin-type methods to in...
متن کاملAsymptotic expansions of oscillatory integrals with complex phase
We consider saddle point integrals in d variables whose phase functions are neither real nor purely imaginary. Results analogous to those for Laplace (real phase) and Fourier (imaginary phase) integrals hold whenever the phase function is analytic and nondegenerate. These results generalize what is well known for integrals of Laplace and Fourier type. The proofs are via contour shifting in comp...
متن کاملOn Quadrature Methods for Highly Oscillatory Integrals and Their Implementation
The main theme of this paper is the construction of efficient, reliable and affordable error bounds for two families of quadrature methods for highly oscillatory integrals. We demonstrate, using asymptotic expansions, that the error can be bounded very precisely indeed at the cost of few extra derivative evaluations. Moreover, in place of derivatives it is possible to use finite difference appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009